The Law of the Iterated Logarithm for Additive Functionals of Markov Chains
نویسندگان
چکیده
In the paper, the law of the iterated logarithm for additive functionals of Markov chains is obtained under some weak conditions, which are weaker than the conditions of invariance principle of additive functionals of Markov chains in M. Maxwell and M. Woodroofe [7] (2000). The main technique is the martingale argument and the theory of fractional coboundaries.
منابع مشابه
An Almost Sure Invariance Principle for Additive Functionals of Markov Chains
In the paper, the law of the iterated logarithm for additive functionals of Markov chains is obtained under some weak conditions, which are weaker than the conditions of invariance principle of additive functionals of Markov chains in M. Maxwell and M. Woodroofe [7] (2000). The main technique is the martingale argument and the theory of fractional coboundaries.
متن کاملAn invariance principle for the law of the iterated logarithm for vector-valued additive functionals of Markov chains
In this note, we prove the Strassen’s strong invariance principle for vectorvalued additive functionals of a Markov chain via the martingale argument and the theory of fractional coboundaries. AMS subject classifications: 60F05, 60J05
متن کاملAn Invariance Principle for the Law of the Iterated Logarithm for Additive Functionals of Markov Chains
In this paper, we prove Strassen’s strong invariance principle for a vector-valued additive functionals of a Markov chain via the martingale argument and the theory of fractional coboundaries. The hypothesis is a moment bound on the resolvent.
متن کاملEmpirical law of the iterated logarithm for Markov chains with a countable state space
We find conditions which are sufficient and nearly necessary for the compact and bounded law of the iterated logarithm for Markov chains with a countable state space.
متن کاملOn the Law of the Iterated Logarithm for Local Times of Recurrent Random Walks
We consider the law of the iterated logarithm (LIL) for the local time of one-dimensional recurrent random walks. First we show that the constants in the LIL for the local time and for its supremum (with respect to the space variable) are equal under a very general condition given in Jain and Pruitt (1984). Second we evaluate the common value of the constants, as the random walk is in the domai...
متن کامل